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Introduction

This memo contains a brief discussion of a simple method for
performing digital simulation of gasdynamic systems. Basically it
is a modification of a method attributed to Courant, Isaacson, &
Rees (1952), "On the Solution of Nonlinear Hyperbolic Differential
Equations by Finite Differences," Communications on Pure and
Applied Mathematics, vol V, pp 243-255. The approach is somewhat
intuitive and requires some knowledge of the physics of the problem
as well as an understanding of the effect of finite differences. The
method is given in Appendix A which is taken from the book by P.J.
Roache, "Computational Fluid Dynamics," Hermosa Publishers, 1982.
The resulting method is relatively fast while it sacrifices some
accuracy.

Spatial Differencing Revisited
The reader is reminded of the general problem associated with
simulating nonlinear hyperbolic systems of the form

du _ éF(u)
& ox

=S .

The problem is that the information is allowed to travel in both
spatial directions in subsonic flow. it then becomes difficult to
choose a spatial differencing operator. A central difference would
be the obvious choice, however the resulting difference equation for
u will become dominated by high frequency spurious noise or
instability. A pure forward or backward difference, on the other
hand, will only allow information to travel in one direction, again
yielding numerical instability. The clever thing about the Courant,
Isaacson, Rees approach is that the actual physics of the process is



considered when doing the differencing. The terms in the F(u) vector
associated with mass flow and energy are assumed to propagate
signals downstream. Thus each of these terms are approximated
using backward differences. Alternatively, the terms in the F(u)
vector associated with pressures are assumed to propagate
information in both directions. Thus each of these terms are
approximated using central differences. The resulting method has
the remarkable properties of stability, sheck capturing, and
reasonable accuracy. Both the time responses and steady state
spatial distributions have first order accuracy. Furthermore, it also
appears that some rather large spatial lumps are possible. A real
benefit of this method is its simplicity and computational speed. As
it does not usually require explicit artificial dissipation and is a one
pass method, it should be approximately two times faster than
MacCormack's method.

The method, as applied to quasi-one-dimensional gasdynamic
systems, is as follows:
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The specific method used approximates the time derivatives with
Euler's method.

For completeness, the simple first order method of Lax (see
Appendix A) was also attempted but was dominated so much by
diffusion that no shock capturing was apparent, while some very
small spatial oscillations were. This method is not recommended
for systems that contain shocks.



40-60 Inlet Validation _
The NASA Lewis 40-60 Inlet was simulated in QuickBasic using this

approach in order to determine its applicability. The program is
given in Appendix B for reference and will be referred to as PHYSL
for PHYSical Lumping. Forty-one lumps were used with a timestep
of 20 us, half of the usual. The steady state spatial distributions
for several flow variables are given in in the figures. It should be
noted that the shock is sitting a little farther back in the inlet with
respect to the usual distribution from LAPIN and MACGAS which is
given in the NASP paper. Also, the shock is a little more mushed out,
but not too bad considering the simplicity of the method. A
transient response was also obtained on what has become the
standard test problem, that is, the downstream pressure input of
+100 psf at t=0.002 seconds. The response has the same shape,
however it is a little slower in responding and peaking. It is not
clear whether this is "good enough" but would appear to be very
promising as it still allows large perturbations. The LAPIN and
MACGAS responses are also included for comparison.

Discussion

Some of the benefits of the PHYSL approach requiring further study

are given below.

1) The method should be about two times faster than MacCormack's
method. It should be ncted that PHYSL appears to need a smalier
timestep.

2) Larger lumps may be possible which would then allow even
further speedup.

3) Large nonlinear models are easily written down, allowing their
direct study for possible model reduction (as opposed to methods
using Jacobian computations, prediction and correction, or
artificial viscosity).

4) It also allows easy linearization of the discrete lumps for linear
models and model reduction.

5) Alternate integration methods may be possible as opposed to
Euler's method which the PHYSL method presently uses.

6) It may be possible to use different flow variables to allow even
more efficient or natural spatial differencing.

7) It may be possible to develop a more useful buzz model using this
method.



The major disadvantage of the method is basically its lack of
accuracy. The methods used in LAPIN and MACGAS are second order
accurate methods whereas this is a first order accurate method. It
is not clear how bad the transient response can become using this
method and still be meaningful.
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v-D-4. Errors Arising from Artificial Viscosities R e e R i

The use of artificial viscosities is often unavoidable, and it can be acceptable; but
some strange errors can arise from explicit artificial viscosities, aside from the obvious
ones common to incompressible flow calculations (section III-A-8). Schulz (1964) pointed
out that simple application of the von Neumann-Richtmyer 9y in cylindrical or spherical

coordinates causes a diffusion of radial cozentum, He extended qlbto a tensor form which

maintains strict conservation of radial momentum. Cameron (1966) showed that explicit
artificial viscosities introduced surprising errors in the calculation of shocks propaga-
ting across a material interface or across a change in mesh spacing, Ax. The von Reumann-
Richtmyer ql-term causes spurious fluctuations for the changes in entropy and density as

the shock crosses a caterizl interface. Also, when &x changes; a false shock wave is
reflected off the mesh change, and the speed of the original propagating shock is altered.
He also found that Landshoff's q, did not adversely affect shock speed at a mesh change,

but was less useful than the von Neumann-Richtmyer 9 because the shock thickness now

changed abruptly at the mesh change. Cazeron used both errors to partially cancel each
other. By changing &x at the material interface, he obtained the correct speed for the
propagating shock. The false reflected shock still appeared, however. Higble and Plooster
(1968) varied the von Neumann-Richtaoyer 9 for a shock propagation problea in Lagranglan

coordinates in such a way that the shock thickness in mesh increments stayed constant as
the mesh spacing continually changed, thus eliminating escillatilons.

V-E. NMethods Using Irplicit Artificial lamping

Instezd of adding explicit artificial viscosity terms like 9y to the equations, arti-

ficial dazping may be added implicitly, just from the form of the difference equatioms.
Sometimes these methods add an artificial viscosity in the sense of a non-zero coefficient
of second space derivatives, and scmetimes they just add artificial demping in the sense

of the eigenvalues of the azplification matrix being less than one in magnitude. Ia either
case, these methods may require additional explicit artificial viscosities in order to
stabilize strong shock calculations.

y=-g-1. Upwind Differencing
—_— T e

The second method of Courant, Isaacscn, and Rees (1952) is a one-sided or upwind
differencing scheme, as described in secticn III-A-8. It was also suggested by Lelevier
(see Richtmyer, 1957) for Lagrangian equaticns, and is frequently referred to as Lelevier's
pethed (e.g., Crocco, 1955; Roberts and Weiss, 1966; Kurzrock and Mates, 1966). In equation
(4-63), each of the advected properties, U, that appear in F and G 1s differenced according
to the sign of the advection velocity, u or v, respectively., However, the pressure gradients
in the momentum equations cust not be evaluated by upwind differences, zs will be discussed
in the next scction. In terms of the 1D inviscid equations (4-65), the first upwind dif-
ferencing method is as follows.
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UPWIND DIFFERENCING

n B

S Joyqn . n . :
. s, ; ;‘[u(Es +.P)]i -‘EJ(ES + P)]i—l for 4 >0 (5-208)
. At Y Ax . {

w(E_ + )10, - [u(E. + B)]D
L b ]“‘tx[ o * Pl for u, <0 (5-243)

The 2D difference equations follow this form in an obvious way. The analysis of Kurz-
rock (1966) indicates that stability is limited, in addition to- the Courant-number restric-
tion, by

ful/ax + Iv]/ay

: .‘ -
[]ul/Ax + |v|/ty + a/ax V1 + 52]

st < (5~254)

or, for Ax = ay = Afor 8 = 1),

s < (sl + Iy

- (Ju] +{v] +a JFE32

This limzitation will become doxzinant in stagnation regions and in recirculating flow reglons,
wvhere u, v =~ 0. (See also sectien V-E-3.)

(5-25B)

The modifications of this first upwind differencing method, which are necessary to
achieve strict conservation near a region of velocity reversal, follow the descriptica in
section III-A-10. The more accurate second upwind differencing follows the descriptien in
secticn III-A-11.

These upwind differencing cethods introduce effective “"viscosity' through the trunca-
tion errors of the one-sided differences. The method adds artificial diffusion terms to

U=op, pu, pv, Es in equation (4-63). From the analysis in section III-A-8, the x- and

y-diffusion terms for the translent analysis zare

a, = %-qu(l - uAt/Ax?

(5-264)
1
“ay - E-yAy(l - vAc/Ay)
and, for the steady-state analysis,
1
- a. 3 udx |
a, =Ly (5-26B)
y 2

Note that-the viécosityfeffecc“is not really equivalent to a physical viscosity, since the
coefficients are directional and dependent oa the velocity components.

é*é;cige:' In a flow patallel to "the x-axis with aU/ax = 0, but with an arbitrary density
Pl distribution in the. y-direction, contrast. the’ artificial diffusion behavior of
i the prind differencing method with that of Rusanov s method.

Fo: strong shocks appearing in inviscid calculations, this implicit viscosity is not -
usvally sufficient to stabilize the calculations (Richtmyer, 1957), but Kurzrock and Mates

Loca




SHOCKS .

(1966), Scala and Gordon (1967), and Roache and Mueller (1970) havefapplied-i: to low (cell)
Reynolds-number flows with success.* . This method is also the basis of:the PIC and FLIC codes,
to be c_lescribed shortly. R T I RIS SR ;.___"';-,,g.;“. : . 2 )

R C.

.. The upwind difference method possesses the transportive property (sections IXI-A-9, 10)
vhich 1s significant for both subsonie and supersonic flow. ‘The associated lack of second-
order spatial accuracy is somewhat less significant in supersonic than. in subsonic flow, as .
we now discuss. . o - e e e S

y~E-2. The Domain of Influence and Truncaticn Error

In this section, we will compare and relate the domain of influence in continuum and
in finite-difference equations. Our objective is to show how upwind differencing maintains
something of the correct characteristic sease of the continuum equations and does not
necessarily have a worse spatial truncation error than do centered difference methods.

Consider first the incompressible continuum flow equations,

vy =g (5-27)

a9 @+ v (5-28)

-
e

The vorticity transport equation (5-28) is parabolic and, by itself, represents an inicdal-
value problem with lizited spatial domain of influence in the inviscid limit 1/Re = 0. But
the Poisson equation (5-27) is elliptic and represents a boundary-value problem. Therefore,
a disturbance in g at any point in the flow icmediately affects all other points in the
field, even with 1/Re = 0, through the nonlinear term V which depends on ¢, and thus g,
through equation (5-27). This property is shared by the finite-difference equations. We
say that the system (5-27) and (5-28) possesses infinite signal propagation speed, and so
does the finite-difference equation.

The inviscid cozpressible flcw equatifons are all transport equations like (5-28) and
therefore represent initial-value problems. The signal propagation speed is finite; for
small linearized disturbances, the signal propagates at the isentropic sound speed (a)
relative to the fluid, or at (V + a) relative to an Eulerian mesh. Consequently, for V> a,
i.e., M> 1, no disturbance is propagated upstream. This leads directly to the well-knewn
tach-cone principle, or the principle of limited upstream influence.

Consider now the signal propagation in a finite~difference equaticn. If space-centered
differences are used, any disturbance at (1) at time (n) is felt at (itl, j*1) at (n+l),
no matter what the value of At. Thus, the propagation distances are always the saze, &%
and Ay. The propagation speeds are then 4&x/4t and Ay/st. The Courant-Friedrichs-Lewy
(1928) or CFL necessary stability requirecent is that the finfte-difference domain of
influence at least include the continuum domain of influence, i.e., Ax/At < V + a, or

C = _(.V_%)ﬂi <1 (5-29)

wvhere C is the Courant number. In stroQg shock problehs, wvhere the small-disturbance as-
sutption is not valid, replacement of "a' by the ncnlinear shock propagation speed a > 2
leads to the von Neumann-Richtmyer (1950) requirement.. o

Courant et al. (1928) did not réquire‘anythiﬁé'elée‘from the finite-difference equations,
since their objective was only to demonstrate the existence of solutions. But it clearly

“a PR,

o - T - T S SRS SR S DU SR oLt .

_"Scala and Gorden (1967) used upwind differencing for the advection terms, but with
a more complex pattern of operations, as in Sheldon's method for the Poisson equation (see
section III-B-7). . : s

<



PIC AND FLIC

would be: desirable also to:maintain- something of the limited upstream influence of the.
continuum system. - Working with'a rectangular mesh, the most we can ‘accomplish i3 to re-"{'°
strict the sense, +-or -, of perturbations along u and v. This led Courant, Isaacson, :
and Rees (1952) to their method for differenicng in a rectangular mesh, upuind differencing.
This 1eads again to the notion of transportive differencing for the advection terms, - *
as-discussed in sections III-A-8, 9, 10. But allowance must be made for the possible
nonlinear upstream propagation in the case a, > V. This leads to the space-centered dif-

ferencing of the pressure gradient terms of the momentum equations, so that pressure
gradient effects are felc upstrean.,®* Note that P is not an advecged quantity in 9P/ 9x -
and 3P/3y, but is an.advected quantity in the flow-work term, V- (VP), of the energy equa-
tion; consequently, upwind differencing Is used on the flow-work term.

The distinctien between the téhavior cf these equatio .s and the inccmpressible system
{s that no elliptic equation like (5-27) appears, so the cozpressible inviscid systen is
purely hyperbolic.

The second-order accuracy of space-centered difference methods is still highly desirable,
of course, as it was in iIncozpressible flow. 3ut in supersonic flow, we sacrifice less to
achieve the transportive property. The accuracy evaluation of centered differences of
section III-A-1 is based on Taylor series expaasions for the flow properties, assuming
continuity of the flow variebles and their derivatives. 3Bur, in inviscid supersenic flow,
the inviscid equations do nct necessarily display continuity of derivatives. In fact,
characteristic curves may be defined (Courant and Friedricks, 1948; Shapiro, 1953) as
curves across which flew variables may have disceatinuous derivatives.** Therefore, the
Taylor-series expansion is rot always valid, znd the loss of truncation order of the dif-
ferentials 1s not as izportant in supersonic flow.*k**

For viscous flow, the characteristics do not exist and the above arguzents are weakened.
It does seem reasonable, however, to base argucents on the differencing methods for the
advection terms on only the behavior of the fnviscid equations. This approach is conceptually
vague, but the known success of zethod-of-characteristics solutfons in cozputing real flows
with small viscosity supports the approach.

Lax (1969) has shown that the upwind difference form gives a very good shock calculaticn
in the inviscid form of 3urger's equation, ut fails for the full systen of compressible
ficw iaviscid equaticas and also, surprisingly, for the lirearized iInviscid Burger's equation.
That is, the calculaticns of the nonlinear eguation are more accurate then those of the
linear equation. :

Vv-E-3. PIC and FLIC

A well known method originally devised by Evans and Harlow (1957) is the gerticle-in-'
Cell or PIC method. The genesis of this method is different from most, in that the attecps
Ts not made to model the differential equations so much as the fundamental physical process,
through a finite-particle approach. . PIC may unequivocally be called a “simulatien" method.
The calculations proceed in several phases at each time level, with several key intermediate

Kurzrcck (1966)  experimented uith forward, backward and centered pressure differences.
His experiments and his stability calculations show that centered pressure differencing is
preferable for his boundary-layer calculations.
. - Note the physical absurdity that would result from:using upwind differencing for pres-
sure and all advection terms. .Then, in the quasi-1D duct flow problem described in section
I1I1-C~9, the effects of flow perturbations it outflow. (L = I) could never be felt upstream,
and a shock could not propagate upstreeml It -would therefore not- be possible to conputation—
aliy tcrn of an’ indraf: superscn-c wind tundel.v‘_ T .. L : PR

It is precisely this property that gives the method of characteristics its utility,.
allowing different flow. regions to be patched tosether alcng characteristics.t .

B **HcNemara (1967) credits Trulio. (1964) for- showing that, for: time-marching methods
with discontinuous derivetives. -the truncation error tends to zero no fas:er tban (Ax) /2
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527 SHOCKS

cell properties being’ calculated ‘on ‘the basis of pressure contributions, ‘followed by advecd i’
tion calculations: The method is too “coxplicated to’ “déscribe in- complete detail here, but"*
the mest’ unique aspect is that ‘continuum flow is not’ modeled “rather, a finite nuzber of
particles 13 used; their locations and velocities being traced by Lagrangian kinematics- as._f
they move through a computational Eulerizn mesh. They are ‘not merely marker particles as ;
in the MAC code (see section III-G-4), but they actually participate in ‘the calculatien; -
even when free surfaces and interfaces are not present. Cell-averaged thermodynamic proper-"
ties are calculated, based on the numbers of particles in the cell.” As few’as six particles/
cell on the average and three particles/cell locally have,been used.’ The results display

high frequency oscillations in cell density and pressure, as expected.

A continuum method which evolved out of the PIC code’is the Fluid in Cell or FLIC-
code of Gentry, Martin, and Daly (1966), based on earlier work by Rich: (1963) They departed
from the finite particle approacn of PIC but retained most of the other aspects. It is a

two-step method. In the first part of the first step, provisional values, un+l and.vn+;;‘:-

are calculated using only the contribution of the pressure gradients and the explicit arti-
ficial viscosity terms, if present. [A form like (5-10) is used for the explicit artificial

viscosity.] Non-conservation forms are used. Then a provisional'internal energy, en+l, is

calculated only from the pressure term of the equation

-g% - -V.ve - PV.V (5-30)

plus its artificial viscosity terms. The divergence V-V is based on velocities ﬂij

= 1/2 ui‘ + un;1 vherein the provisional values u?jl
for ¥. In the second step, only the contributions of advectifon terms are calculated. The
pass flux across each cell interface is calculated, using donor cell differencing (second
upwind difference method, section III-A-11) based on the provisfonal values of velocities

-+
un+l and v 1. This mass flux is used to calculate a new density pn+l, and then to calcu-

late only the advective coatribution to u, v and e, = Es/p. Note that this final advective

have already been calculated; likewise

contribution wust be added to the provisional value un+1, etc., rather than the criginal

n+l
values u , etc.

The PiIC calculation is similar, but the mass flux calculation is based on a finite
number of particles from the donor cell. The particles are not located at the center of
the cell, but each particle p has {ts own Lagrangian coordinates, x_ and yp.v The particles

are moved by the same velocity weighting used in the MAC code (see section III-G-4, equation
3-605). If the particle crosses the cell boundary, it contributes its mass, mozentum, and
internal energy to the averages in the new cell, upon which the pressures for that cell are
calculated. As mentioned earlier, momentary crowding or depletion of particles in the

cells will occur, producing a random high frequency oscillatfon of cell properties. This
oscillation models the molecular behavior of the gases, but with very few computational
molecules.

Both the PIC and FLIC methods. use donor cell (second upwind) differencing for the ad—
vection terms end therefore have an implicit artificial viscosity (see sections V-E-1, 2).
Gentry, Martin, and Daly (1966) pointed out that the effect of q.- [u] in PIC and FLIC
means that the artificial diffusion is not Galilean-invariant, i.e., the "wind tunnel
transformation” does not apply to these computations.* Also, the method 4s locally unstable
at stagnation points without the additional explicit.q terms because the implicit q - |
according to Evans and Harlow (1958, 1959) and Longley (1960). See also equation (5- 25)
et seq. 3Zoth methods arz sresented in the ori ginal pepers for toth Cartes131 and cylindrical
coordinate systems. ’ :

‘The PIC method is most advantageously applied to’ interface p*oblems (free surface or
multiple materials), because the discrete particles may be assigned different masses,
specif{c heats, etc., to represent two fluilds, a free fluid surface, or even a fluid and ...
a deformable solid.  Solutions to the early problems of empty cells, boundary conditions, )

1 - P

TN - Ll TP 3

*Also true of all upuind differencing methods.”

;#\
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LAX'S METHOD

and details of the particle weighting procedures have evolved over the years of successful |
application (Evans'and;ﬂéklow,;1957,A1958;:1959;.Evaﬁs‘ec al., 1962; Harlow, 1963, 1964). "A
review of these techniques was given by. Amsden (1966). Mader (1964) has extended the approach
to include chemically reactive fluid dynamics in his Explosive-in-Cell or EIC method; Hirt
(1965) also presented PIC calculations of shock detonaticn by explosives. The PIC approach
was extended to.plasma stability caléulations by Dickman et al, (1969) and Morse and Nielson
(1971).  Armstrong.and Nielsen (1970) demonstrated the good agreement of PIC transient compu-
tations with transform method calculations.cf the nonlinear development of a strong two-~
stream plasma instability. The accuracy has also been demonstrated by several PIC-like
multi-material codes at Physics Internatioral (Buckingham et al., 1970; Watson and Godfrey,
1967; Watson, 1969). Amsden and Harlow (1565) calculated the gross features of supersonic
turbulent flow in a base region. Crane (1968) attempted an accurate calculation of a
hypersonic near wake problem using PIC with inviscid equations; the method is not well

suited to this problem, and the calculation was unsuccessful. The accuracy of the FLIC

method was independently ascertained by Gururaja and Dekker (1970) on several complex 2D
shock-propagation problems, and by Satofuka (1970) in calculating 2D planar and cylindrical
shock tube problems, Another FLIC-type code is the TOIL code of Johnson (1967); see also

Hi1l and Larsen (1970) and Reynolds (1970). TFor references of other work on PIC and FLIC
codes performed at Los Alamos Scientific Laboratory, see Harlew and Amsden (19704). .

Butler (1967) included viscosity and heat conduction in both PIC and FLIC, and found
that the two methods produced comparable results.

V-E-4. Lax's Method . <:;

lax's method* appears in Lax's((1954) fundazental paper on conservation equations. Lax
was most concerned with the ceaservation principles and only secondarily with the finite-
difference scheme. To stabilize calculaticns of the inviscid 1D equations (4-66) using
forward-tipe, centered space differences, as in

n

n+ T

y Lol - %f; (5-31)
1

U

he replaced the U: in the right-hand member by its space averige at tize n.

w0l

1 11 a [
) (U:L-l * ”1+1) Tt E, (5-32)

n+l
Uy

This sinmple and historically izportant method has several ianstructive properties. The
space derivatives are centered and therefore appear to be second-order accurate, but the
method is also diffusive. (Richtoyer, 1963, identifies it by the term "diffusing'".) Con-
sider the model equation (5-1) with a = 0. Lax's method thea gives

0

+
GO+l .% (u“ g du (5-33)

. o " ) -
- 1 T M-1) TR

i

Expanding in Taylor series, as in Hirt's stability analysis (section I1II-A-5-c), we obtain

.

37

N * 2 . . ) . . . ' 2 K 3
o TBw o L 3T, 2 o3 Lln 8w, 123 2 1037 ,.3 b
ug *5e Ac.‘ti'axz at° + 0(ac”) - 2'[‘;1 Fao X+ 2 bx" + % 3 £x” + O(ax )]‘ :

T .

by
T
o

X sl o JeEmSae e e R R T IR e s
. f«’Cémmonlyvreferred=to-as=Lax's-method.”‘It:first'appears‘in open”literature in’a’foot-:
note of Courant et al., (1952) as the "scheme of J. Keller and P, tax." Richtmyer (1963) __ ..
also mentions K. 0, Friedrichs in connection with. it.. : e o
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From this transient analysis, Lax's zethed is seen to introduce an effective artificiél,
diffusion coefficient,

2 2 2.2

o [ax0 s 2)_Ax _ufat
ae ( AC 2 a ZAC [l 2 ] (5"38)

Lx
or
2 .
o LX - 2]

a, irx [l c (5-39)

Stability in the model equation requires N 20o0r ¢ £1, as usual. For c = 1, the exact

solution of the model equation is obtaired. Since the zmethod is applied to all variable§
U=p, pu, Es' the artificial diffusiocn represents not only an artificial viscosity, but

also artificial mass diffusion and heat conduction.*
The order of the truncaticn error is deternined from equation (5-37) to be

2

- 2 A% : -
E - O(Ax at, 2% ) | - (5-40)

This equation indicates that, as At + 0 for fixed Ax, the truncation error becomes unbounded.
This indication is meaningful. It is disconcerting.in the extreme to accidentally run a’
shock propagation code with At = 0, as the present .author has done, and find that the shock
still propagqtes! {Consider equation (5-32) with At = 0.] The disturbance does not actually
propagate with a wave front, as a shock does, but diffuses out from the initial jump condi-
tion for at = 0. ' ' ' :

For small encugh At, the gethod obviously provides sufficient an.tofstabilize a strong

shock calculation. For ¢ -.1. the damping vanishes and the method cannot be used with shocks.
Lax's method is very easily exténded to two and‘three dimensions; as

n
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» ! A “ '.. R DI RPPUAEFE :. "3 - T (5’42)

* : , )

A diffusive scherne dpubly_violatgs‘thentransportiye property., Whereas the ;eapfrog
methods. (section III-A-6), for example, advect 'the éffect of a pérturbation upstream,
against the velocity, a diffusive scheze also advects it at’right angles’to the velocity. ™~
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. Exercise: Show that “e of Lax s method by the steady-stnte analysil isg = Ax IZAt.

LAX-WENDROFF METHOD

The corresponding stability :equirementa are i”, B
Cpp = 1%)-‘—\/“2 + z\y2 ) (5-43)
. y. :
(V+ a)st ‘2 312
-C (Ax + by +Az) L 21 - - - (5-44)

3D ¥ Thx-Ay-Az

Thus, for Ax = Ay - 4z, the latgeat poesible at is tedueed by a factor of 1//3 = 0,58,
Exercise: Derive expressions for a, of Lax'n nethod in two and three dimensions..
Exercdee: Determine the conditionl for which Ruaanov s method reduces to Lax’s method.
Moretti and Abbett (1966A) used the two- dimenlional version of Lax's method in con-
junction with a patched characteristics solution in an attempt to calculate base flow.

They noted a phenomenon which they called "stalling . That iu, with & spatial gradient of
properties such that

-1 o n n _
UEAUES - ( Yger,g Y V-1, Pl F “1.1-1) (5433
the time solution adjusted to a condition vhere
n .
LI ; : -
Ui 91 T 4t . . (5-46)
so that Uz+l " U for all i. The situaticen couid‘be changed by changing At. Of course,

the method was not intended to be used on this subsonic shock-free problem, but the example
shows up another shortcoming of.the method.

In spite of its shortcomings, the method has an important.asset: simplicity. It is
also easily adapted to cylindrical, spherical, and 3D problezs, This appears to be the
major reason for its use by Bohachevsky and Rubin (1966), Bohachevsky and Mates (1966),
Bohachevsky and Xostoff (1971), Barnwell (1967), Xerikes (1968), and Emery and Ashurst
(1971). Kentzner (1970B) experimented with using the Lax method and the midpoint leapfrog
pethod (section II1I-A-6) at different time steps and in different weighted combinations,
in a.two-dimensional problem in vhich the shock di:continuity wvas treated as a boundary.

. Because it is easily programmed and is dePendable, Lax's method can be used to advan-
tage in the early stages of program development. The program can be converted to more
complex methods afterwards. ) .

Exercise: Show that’ the use of Lax s method on’ the advection terms and FICS differencing
. .. on the diffusion term of the model equation results in an unconditionally
", unstable method._ ) L - _.:." . .

HINT. Use the analysis for the FICS nethod. replacing a by (a + a ). :

-t 0

V-E-5. Lax-and:off Hbthod

.71 Lax and Wendroff (1960 1964) investigated a clnss of netnods uﬁich has attained con=-

siderable stature in, theoretical studies of’ difference methods, and which led to a class

:of two-step methods (next section V~E-6) which-are currently the most popular methods for

solving’ compressible £lov problems. - - Like Leith's method. (aection 111-A-13), all’ these
are-based on & second-ordet Taylor series expansion in' tize, nnd all are identical to
Leith's method for the conatant-coefficient nodel equation. ' :
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Apﬁa/:}/ et
DIM (50),m(50),e(50),nr(50),nm(50),ne(50)
DIM fr(50),fm(50),fe(50),p(50),a(50),dadx(50),np(50),mach(50)
a(1)=1.5173 .
a(2)=1.462
a(3)=1.4027
a(4)=1.3399
a(5)=1.2675
a(6)=1.1812
a(7)=1.0862
a(8)=.9875
a(9)=.8995
a(10)=.8194
a(11)=.7738
a(12)=.7605
a(13)=.7617
a(14)=.7658
a(15)=.776

1.0267
1.0756
1.1182
1.1163
1.1278
1.1532
1.1829

a(29)=1.2215
1.2518
1.2602
1.2463
1.2372
1.2238
1.2092

a(36)=1.2052
a(37)=1.1882
a(38)=1.1905
a(39)=1.2124
a(40)=1.2547
a(41)=1.2986
r(1)=.00033261#
r(2)=.00034841#



r(3)=.00036703#
r(4)=.0003892#
r(5)=.00041833#
r(6)=.00045941#
r(7)=.00051552#
r(8)=.0005917#
r(9)=.00068451#
r(10)=.00080715#
r(11)=.00091045#
r(12)=.00094969#
r(13)=.000946#
r(14)=.00093331#
r(15)=.00090439#
r(16)=.00086285#
r(17)=.00081293#
r(18)=.00075621#
r(19)=.00069773#
r(20)=.00064524#
r(21)=.00059902#
r(22)=.00055888#
r(23)=.0011533
r(24)=.0013227
r(25)=.0013217
r(26)=.0013278
r(27)=.0013401
r(28)=.001353
r(29)=.0013678
r(30)=.0013781
r(31)=.0013807
r(32)=.0013763
r(33)=.0013733
r(34)=.0013687
r(35)=.0013633
r(36)=.0013619
r(37)=.0013552
r(38)=.0013561
r(39)=.0013646
r(40)=.001379
r(41)=.001392
m(1)=.6187
m(2)=.6422
m(3)=.6692
m(4)=.7006
m(5)=.7407
m(6)=.7948



m(7)=.8643
m(8)=.9506
m(9)=1.0436
m(10)=1.1458
m(11)=1.2133
m(12)=1.2344
m(13)=1.2324
m(14)=1.2259
m(15)=1.2098
m(16)=1.1842
m(17)=1.1499
m(18)=1.1061
m(19)=1.0556
m(20)=1.0057
m(21)=.9582
m(22)=.9143
m(23)=.9292
m(24)=.8396
m(25)=.8408
m(26)=.8322
m(27)=.8141
m(28)=.7937
m(29)=.7685
m(30)=.7498
m(31)=.745
m(32)=.7534
m(33)=.7587
m(34)=.7671
m(35)=.7763
m(36)=.7789
m(37)=.79
m(38)=.7886
m(39)=.7744
m(40)=.7481
m(41)=.7229
e(1)=978.86
e(2)=1022.18
e(3)=1073.01
e(4)=1133.21
e(5)=1211.74
e(6)=1321.41
e(7)=1469.42
e(8)=1667.06
e(9)=1903.51
e(10)=2209.09



e(11}=2460.65
e(12)=2555.09
e(13)=2546.03
e(14)=2515.9
e(15)=2446.01
e(16)=2345.17
e(17)=2223.24
e(18)=2083.06
e(19)=1936.75
€(20)=1804.08
e(21)=1685.8
e(22)=1582.19
e(23)=2890.29
e(24)=3315.79
e(25)=3313.64
e(26)=3326.71
e(27)=3353.03
e(28)=3380.58
e(29)=3411.96
e(30)=3433.77
e(31)=3439.31
e(32)=3430!
€(33)=3423.6
e(34)=3413.82
e(35)=3402.4
e(36)=3399.3
e€(37)=3385.14
e(38)=3387.13
e(39)=3405.1
€(40)=3435.67
e(41)=3463.18
p(41)=1300
np(41)=p(41)
nr(1)=r(1)
nm(1)=m(1)
ne(1)=e(1)
p(1)=.4*(e(1)-.5"m(1)*m(1)/r(1))
np(1)=p(1)
OPEN "friedss"” FOR INPUT AS #1
FOR j=1 TO 41
INPUT  #1,r(j),m(j),e(j).p().a(j),dadx(j)
NEXT j
CLOSE
X=.1427
T=.00002



cfl=T/IX
10 k=k+1
LOCATE 1,1
PRINT "Time = "K*T
PRINT "xs = ",Xs
q$=INKEYS
IF g$="c" THEN CLS
IF q$="c" THEN k=2
IF q$="p" THEN np(41)=np(41)+100
IF g$="m" THEN np(41)=np(41)-50
IF g$="f" THEN nm(1)=nm(1)+.02
IF g$="0" THEN GOTO 51
FOR j=1 TO 40
PSET(k/10+200,1200-50"xs)
'PSET(k+200,1400-np(25))
'PSET(},100-10000*nr(j))
'PSET(j,150-25"nm(j))
'PSET(j,200-.01*ne(j))
'PSET(j,250-25%a(j))
dadx(j)=(a(j+1)-a(j))/X
'PSET(j,300-50"dadx(j))
PSET(j,300-25"mach(j))
PSET(j,400-.02*np(j))
np(j)=.4(e(})-.5"m(j)*m(j)/r(j))
NEXT j
FOR j=1 TO 41
IF k<2 THEN GOTO 12
r(=nr(j)
m(j}=nm(j)
e(j)=ne())
12 fr(j)=m(j)a(j)
p()=np(j)
PSET(50+4"j+2*k,400-.05*p(j)-3"k)
fm(j)=a(j)*(m(j)*m(j)/r(j))
fe(j)=a(j)"m(p)*(e(j))/r(j)
NEXT j
js=0
FOR j=2 TO 40
nr(j)=r(j)-cfi*(fr(j)-fr(j-1))/a(j)
nm(j)=m(j)-cfl*(fm(j)-fm(j-1))/a(j)-cfi*.5(a(j+1)*p(j+1)-a(j-1)"p(j-1))/a(j)+ T p(j)"dac
ne(j)=e(j)-cfl*(fe(j)-fe(j-1))/a(j)-cfi*.5*(a(j+1)*p(j+1) "m(j+1)/r(j+1)-a(j-1)"p(j-1)"m(
1)/alj)
np(j)=.4*(ne(j)-.5*nm(j)"nm(j)/nr(j))
mach(j)=nm(j)/(nr(j)*SQR(1.4"np(j)/nr(j)))
IF js>0 THEN GOTO 66



IF rnach(j)<1 THEN js=j

66 NEXT j
xs=js-1+(mach(js-1)-1)/(mach(js-1)-mach(js))
nr(41)=1.1*nr(40)-.1*nr(39)
‘'ne(41)=1.1*ne(40)-.1*ne(39)
nm(41)=1.1"nm(40)-.1*nm(39)
ne(41)=np(41)*2.5+.5" nm(41)"nm(41)/nr(41)
'nm(41)=SQR(nr(41)*2"(ne(41)-2.5*np(41)))
GOTO 10

51 OPEN "friedss" FOR OUTPUT AS #1

FOR j=1 TO 41

WRITE #1,r(j),m(j),e(j),p(j),a(j),dadx(j)
NEXT j
CLOSE

END



3.3261E-04,.6187,978.86,161.3707,1.5173,-.3875262
3.490575E-04,.6421022,1023.219,173.0542,1.462,-.4155576
3.688516E-04,.6692475,1075.901,187.5026,1.4027,-.4400836
3.934306E-04,.7006146,1139.949,206.4511,1.3399,-.5073579
4.271239E-04,.7406338,1226.446,233.7263,1.2675,-.6047654
4.756736E-04,.7947454,1349.906,274.3936,1.1812,-.6657325
5.437855E-04,.8642546,1521.851,334.0234,1.0862,-.6916607
6.352177E-04,.9506363,1752.094,416.3023,.9875,-.6166784
7.418117E-04,1.043639,2023.014,515.5511,.8995,-.5613174
8.449772E-04,1.145659,2292.624,606.3818,.8194,-.3195515
9.016081E-04,1.213173,2445.335,651.653,.7738,-9.320253E-02
9.11371E-04,1.23439,2475.782,655.9336,.7605,8.408975E-03
8.993929E-04,1.232445,2449.963,642.2195,.7617,2.873178E-02
8.787841E-04,1.225846,2403.358,619.348,.7658,7.147879E-02
8.479405E-04,1.209733,2330.654,587.0831,.776,.1170285
8.089402E-04,1.184248,2236.579,547.896,.7927,.1660827
7.638988E-04,1.149869,2125.713,504.114,.8164,.226349
7.15049E.04,1.106107,2002.318,458.7206,.8487,.284513
6.670071E-04,1.055609,1877.251.416.7781,.8893,.3030399
6.273364E-04,1.005734,1767.817,384.6516,.9334,.3251577
6.074699E-04,.9581046,1693.779,375.2855,.9798,.3286618
6.415262E-04,.9143353,1730.304,431.4897,1.0267,.342677
8.079688E-04,.8727631,2087.237,646.3432,1.0756,.2985278
1.138254E-03,.8395169,2871.563,1024.791,1.1182,-1.331435E-02
1.298073E-03,.8409532,3261.311,1195.566,1.1163,8.058865E-02
1.291775E-03,.8323805,3242.571,1189.758,1.1278,.1779961
1.313123E-03,.8140482,3290.748,1215.37,1.1532,.2081284
1.328064E-03,.7936094,3322.475,1234.144,1.1829,.2704982
1.348537E-03,.7685305,3368.435,1259.778,1.2215,.2123329
1.353843E-03,.7499269,3379.432,1268.693,1.2518,5.886533E-02
1.345854E-03,.7449259,3360.645,1261.796,1.2602,-9.740744E-02
1.332856E-03,.7532317,3329.793,1246.784,1.2463,-6.376987E-02
1.335863E-03,.7587691,3338.633,1249.258,1.2372,-9.390384E-02
1.326157E-03,.7670736,3316.679,1237.934,1.2238,-.102312
1.322379E-03,.7763314,3308.145,1232.106,1.2092,-2.803131E-02
1.32531E-03,.778%9035,3317.32,1235.374,1.2052,-.1191308
1.310563E-03,.790042,3281.903,1217.51,1.1882,.0161179
1.32432E-03,.78851,3313.474,1231.493,1.1905,.1534684
1.33831E-03,.7742607,3346.921,1249.181,1.2124,.296426
1.370761E-03,.7481508,3399.041,1277.95,1.2547,.3076385
1.374007E-03,.7455398,3452.266,1300,1.2986,0



